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ABSTRACT

Error estimates for Gaussian quadrature are given in terms of the number

of quadrature points and smoothness properties of the function whose integral

is being approximated. An intermediate step involves a weighted-LI polynomial

approximation problem which is treated in a more general context than that

specifically required to estimate the Gaussian qua,.ature error. .
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SIGNIFICANCE AND EXPLANATION

This paper gives error estimates for Gaussian quadrature, one of the most

widely used methods for approximating integrals. It also studies a related

approximation problem that has more general potential applications to the

study of numerical approximations. A particular anticipated use of the

results on Gaussian quadrature is for error estimates of the discrete

ordinates method for the transport equation, by the second author in

collaboration with Professor J. Pitkaranta of the University of Helsinki.

The transport equation appears as a model equation in nuclear engineering,

astrophysics and climatology, to name only a few instances.
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ERROR ESTIMATES FOR GAUSSIAN QUADRATURE

AND WEIGHTED-L1 POLYNOMIAL APPROXIMATION

Ronald A. DeVore and L. Ridgway Scott

I Introduction

"-e purpose of this note is to establish error estimates for Gaussian

quadrature that reflect the fact that the accuracy is not degraded by certain

singularities of the function to be integrated at the boundaries of the inter-

val of integration. While it is well known that polynomial approximation can

achieve greater accuracy at the boundary than in the interior (cf. Timan [31,

p. 262), error estimates for Gaussian quadrature of the explicit type given

here have apparantly not been presented before. The basic thrust of these

estimates is to show that the error in N-point Gaussian quadrature for approx-

imately integrating f on [-1,11 is bounded by

(1.1) Csa N, f if(S)(x)(1 _ x2 )S/ 2 dx
-1

for all integers s 4 2N such that above integral makes sense. Here Cs  is

a constant independent of N and f.

Our technique of proof is in two parts. Firstly, we analyze a Peano

kernel for the quadrature error. This has the effect of establishing the

bound (1.1) for s = 1 and reducing further estimates to a weighted-L
I

approximation problem for polynomials. This part of the analysis is presented

in section 2. Secondly, we consider weighted-LI approximation by poly-

nomials and prove estimates for the error. This is done in section 3.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under
Grant Nos. MCS-81-01661 and MCS-81-01631.
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Finally, the estimates of sections 2 and 3 are combined in section 4 to give

error bounds for Guassian quadrature of the type (1.1) for all a ) 1. The

calculations in section 2 are done specifically for Gaussian quadrature,

although they clearly extend to more general quadrature approximations based

on orthogonal polynomials for weighted integrals.

The weighted-LI approximation estimates show that, for a rather general

class of weights w > 0 and sufficiently smooth f , there is a polynomial

P of degree at most N so that

(1.2) fl If(x) - P(x)lw(x)dx ( C N-  f1If(o)fx)I(f-x)9/2v(x)dx
-1 s -1

for any s such that N+1 9 s • 1. In the case w I and s 1, (1.2)

has been established by N. X. Ky (1).

-2-
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2. Error estimates for Gaussian quadrature

Consider Gaussian quadrature approximation of the formN

(2.1) l f(x)dx w f(x I f)
-1 j= 1 i j

({x are the zeros of the Legendre polynomials and {w are the integrals

of the associated Lagrange interpolation polynomials, cf. G. Szego [2]). The

ordering -1 < x1 < *" < xN < 1 will be assumed, and we introduce x0

-1 and xN+. := 1. We wish to establish estimates of the error

(2.2) e(f) : f(x)dx - I N(f)
-1

in terms of N and properties of f. For example, the Peano kernel theorem

allows us to write

e Pf =f K(t)f' (tldt,
14 -1

at least for smooth f, where K(t) = eN(Ht), Itl 4 I, (cf. (3.3) below)

and Ht is the Heaviside function

(2.3) Ht(x) :=I0 x

0 x < t.

It follows that

K (t ) - I -t - W( = - t - 1 .

x >t x _<t) j

The Chebyshev-Markov-Stieltjes inequality (cf. G. Szego [2], p. 50) implies

that

I + xj ( W i + , j = 1,,N.
i=1

Therefore, for j = 1,**,,N,

x - x ( K(x -) 0 4 K(x +) x - x
i-1 i j -j j+1 ji

Let K denote the continuous, piecewise-linear function (with re pect h, 1.L1e

knots x1 ,#*,x,) which interpolates 0 at *1 and the value

d := maxfx - x JxJ+ 1 -xi} at xj = 1,-.',N.

-3-
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Since K is itself piecewise linear,

IK(x)l C K(x) for all x e (-1,1].

To bound the values dj, recall (cf. G. Szeg6 12], p. 122) that

(2.4) x = -cos 8 where (2N+1)0 /W e [2j-1,2j], j - 1,000,N.

Thus

xj -0 cos = - os 0e

- f J sin e dO
8J-1

(2.5)
((8J-80_ 1 ) max (sin 0J_ 1 , sin 0 }

( (31/21) max{sin ej-it sin 8 }.

Since the function 0 + sin 0/0 is decreasing on (0,1], (2.4) implies that

1/4 sinn n8 4 sin 8J_ 1 0 2 - J I N.

Thus

dj < 6w sin 0 i/ W 61 -Cox N - 61W -x /M.

Since the function x +  x is concave, this implies that

(2.6) IK(x)I 4 i(x) 4 61-l/x 2 / for x e 1-1,11.

Thus we have proved that

le(f) 1 61 - 1 If'(x)I x/ dx.N -1

Since (2.4) implies that

1/N C sin w/(2N+1) 4

for x e [X,,%] and N ) 2, (2.6) implies further that

2
(2.7) IK(x)I 4 61 (1-x

for x e [xl,xN]. But for C e [-1,x 1 ]  [x1,1],I IK(x)I - - Ixi. Thus

(2.7) holds for all x e 1-1,1], giving the following estimate:

Ie lf) 4- 6W P1 If' (x)I min( x Ix2)dx.
-1

-4-
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These estimates hold for all f e L1U(-1,11) whose weak derivative is

integrable with respect to the weight 1 - x2 as can be seen by approxi-

mating f via smooth functions (cf. the definition of the space YS given
w

later in section 3). Summarizing the above, we have the following:

Theorem 1. Let eN(f) denote the error in N-point Guassian quadrature

applied to f e L1 ((-1,1]) (see (2.1-2) for definitions). If the weak

derivative, f, of f is integrable with respect to the weight 1 - x2 ,

then

leN(f)I 6W fl If'(x)l min[/l-x2 /N, 1-x2 }dx.
-1

If f' is integrable with respect to the____n

Ie f) l - If'(x) I dx.

Estimates involving higher derivatives of f can also be derived by

estimating Peano kernels. For example, one may write, for any I < k ( 2N,

e N (f )  P /k(x)f (k)(x)dx
-1

(KI = K in the previous notation). Yk  is a C(k -2 ) piecewise k-th

degree polynomial (with knots {xiJ) satisfying 0 = (i) ...

(i) and k) = (_ 1 )k between knots. Moreover, (k-)x+

N k-1)(x-) = for j - 1,1*,N. Using these facts together with a

special oscillation property of K2, it can be shown that

IK 2(x)Il C min((1-x 2 )/N2,(1-x2 )2 .

However, it becomes increasingly difficult to estimate the higher degree

kernels Kk, k ) 3. Thus the 'cllowing approach proves more fruitful.

Observe that eN(f) = eN(f - P) for any P e p2N-1' where Pr denotes

the set of polynomials of degree not exceeding r. Therefore, Theorem I

implies that

(2.8) IeN(f)I inf P If'-PI(x) w(x)dx,
pe 2N-2 1

-5-
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where w is the weight function

w(x) - 6w min( -x/N, I-x2 }.

Thus, estimates of eN(f) are reduced to a weighted-L I approximation problem

for polynomials. Such problems will be considered in the next section. The

results of section 3 on approximation will be combined with the results of the

present section in section 4 to give higher order estimates of the form

rl/1 p-2/ 8, 2
(2.9) leN (f)I  C fl flSl(x)min( -x/N)" (-xi8d

-1
for arbitrary positive integers s < 2N.
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3. Weighted-L1  approximation

In this section, we shall prove a weighted-L1 polynomial approximation

result of the form

(3.1) inf fP lu-PI(x)w(x)dx - C WN-s/ juls(x)(Iw(x)(i-x 2)lS/2dx,
PePN -1 5,w

where P. denotes the set of polynomials of degree not exceeding N, a is a

positive integer, C s,w  is a constant independent of N and u , and w is

a positive, integrable weight-function to be discussed in more detail subse-

quently. Rather than state our abstract conditions on w and u initially,

we shall develop them in the course of deriving (3.1). However, suffice it to

say that (3.1) will be proved for a class of weights including the Jacobi

weights

(3.2) w(x) - (i+x1 (,-x) > -1.

As a first step, recall the Heaviside function Ht(x) defined in

(2.3). If u is sufficiently smooth, we may write
1 ,1 tl)xt)s-lu (s) ()d

(3.3) u(x) P(X) + (1)! fl Htx)(x-t) u ()dt

for all x e [-1,1], where P1 e P,_l. Let At e PN-S+I be an arbitrary

family depending, say, piecewise continuously on t, and define

(3.4) P(x) = P (x) + (s-!u(S (tt.

Then P e PN' and H5Ider's inequality and Fubini's theorem imply that

f1 lu-PI(x)w(x)dx

(3.5)

(s-i) - {P IAt -tI(xflx- t la- w(x)dx lu  (t)
ldt.(8-1)1-1 -1

Thus to prove (3.1), it suffices to construct in such a way thatt

(3.6) f I= t'I(x)lx'tl 1"(x)dx 4 C 8N-"t w't).

For t near 1I, this is relatively easy to do under the following

assumption s 4

-7-
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(AI) There is a onstant A1  such that

P) w(x)dx 4 A (1-t)w(t) for 0 < t 4 1
t

and ii) ft v(x)dx 4 A1 (1+t)w(t) for -1 4 t < 0.
-11

Example 1. Assumption (AI) holds for the Jaoobi weight w(x) = (1+x) (1-x)

provided Q,B > -1.

Proof. To see this, it suffices to verify, say, i). Then

flw(x)dx = f (l+x) t(1.x) dx
t t

< 2max{a, O} Bdx
t

4 max~ci,01 O-)1+0 /10
( 2 a ~ ' } (l-t) 1(/1+8)

C [211 /(1+011(1+t) -t) 1 + 0

= A ( 1-t)w (t). //

Lemma. Suppose assumption (AI) holds. For i - 0,1, let Xi  denote the

functions given by

A (x) - i for all x e [-1,1].

Then choosing A A for t > 0 and At . A for t 0 gives

1 I~t-H I(x)lx-tl w(x)dx < A (1-t W v(t)
-1 1

for all t e 1-1,1].

-8-



Proof. Suppose t > 0. From (2.3) and (Al), we have

"Ix -H t(x)Ix-tlS- w(x)dx = f1jx t S-lw(x)dx
-i t t

S(l-t)
s - 1 

[lw(x) d.

t

Al1l(-t) Sw(t)

A A1(1-t2 ) Sw(t).

The case t 4 0 is similar. //

Corollary. Let K A 1 be arbitrary, and suppose (Al) holds. Then for any

N > 1 and t e [-1,1] such that /17 4 K/N, the choices for X given
t

in the Lemma satisfy the estimate (3.6) with C. = A1 K

In view of this corollary, it suffices to assume that 4t ) K/N,

where K can be chosen later at our discretion. We shall subsequently

construct, for certain values of t, A = A e P such thatt t,r,N N-2r+l uhta

(3.7) JH -x t(x) 4 C (/ -7/N)2r-lIx-til for x e [-1,1]
t t

where r is any positive integer (to be chosen later depending on w and

s). Furthermore, At will be monotone, nondecreasing, with A (-1) = 0 andt t

x (+1) = 1. Hence alsot

(3.8) H -A t(x) 1 for all x e [-1,13.

Assuming these properties of A for some t for the moment, we proceed tot

prove (3.6) for such t. Let = 1-t/N. Then

-9-

4-

-•'

,. ., i 1
--. . =,, .. .,,... ... ,..,=,, ==.,,=. ,rm m i " m

' a m
I



P. iHtxt ix-tlo-lw(x)dx
-1

(3 9 Ic Ix-t l - w(xl x + C f Ix-t ls-2rw( .tl x 62r 1 ,

Ix-t Ilc r I x-t 1)6

where we used the bounds (3.8) and (3.7) on the first and second integrals,

respectively. Thus the estimate (3.6) follows easily from the following two

assumptions:

(A2) Let s be a positive integer. Then there exist constants A2 < I and

Y > 2 such that, for all 8 > 0 and t e t-1,1] satisfying 1-t2 > y,

f w(x+t)lxls- dx 4 A2w(tae.
Ixl14

(A3) There exist A3 < a, Y > 2 and 0 < k0 < * such that, for all 8 > 0

and t e (-1,1] satisfying 1-t2 ) YS and all k ) k0,

f w(x+t)lxlkx 4 A3w(t)6k+l
Ix P16
It+xI'1

In applying (A2) and (A3) to (3.9), note that, for 6 - /t2/N, the ondi-

tion 1-t2 > YS is equivalent to / YIN. This will therefore be

satisfied if K Y Y, a requirement we now impose on K. Choosing r such

that 2r-s -: k k k0 thus proves (3.6) for t such that (3.7-8) hold.

Before proving the bounds (3.7) and (3.8), we show that (A2) and (A3) hold for

Jacobi weights.

Example 2: Assumption (A2) holds For te .Ttcobi weights w(x) - (1+x) (1-x)

for all A,B e R.

Proof. Take Y - 3. By a change of variables,

f-  ] (w(x+t)/w(t)) Ix! s'xJ

IxJ'5

x a x 0 B .- 1

6- f (I + - Ixl
Ix l S6 

t

f (1+ (-L)y)*(- (L.j)y)B1ylS-ldy.

ly 11

-10-
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2

But for I-t2 • 36, 6/(1±t) e - 2 , 2 ]. Thus the integrand is bounded by

3max{Ie
a l I, }. //

Example 3: Assumption (A3) holds for the Jacobi weights w(x) =

(1+x) (1-x) for all QS > -I.

Proof. Take Y = 2 and k0 = 2 + max{c,0,O}. Then

6 k -1 f (w(x+t)/w(t))Ixl-k dx
Ixl>6
Ix+tl14

= ak- (fl-tlwlx+t)/wt))x kdx + fl+t(w(t- x) / w (t))xkdx)

6 a

= 8k-1(f1-t~1 + -ix (I - ix x-k d + flti- x 8aI+x- _

6 6t _t a ft ) xkdx)

E I (t,6 Ga,8,k) + I (t,6,i,8,k).
+

Since I+(t,,,,k) = I_-t,6,8, ,k), it suffices to show that, for all

jtj (

I_(t, 6 ,Q,O,k) 4 C provided k > 2 + max{a,01.

By a change of variables, note that

I_(t,6,,,,k) = f(-t)/6(1 + (Cj)y)'(1- (._)y)oy-kdy.
I

Let M (I-t)/6. Thus, for a ) 0,

IM (+y) a (IM -1 y) 8y-kdy
I

-1 0 C-k
20M (1-l-y) y dy

1

2a fM (1 -M -1y) 0Y-2dy.
1

In the first estimate above, we used the fact that, for Itl 4 1,

(l+t) )l/2 (1-t)(1+t) 1/2y6 = 6.

; -11-
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For Q < 0, one has

S fM(1-M'Iy) y -kdy

1
fM -I -y) 0 Y-2 d.

I

A simple calculation shows that, for 1 4 1,
fM,(1-M-ly)BY2dy C for all B > -1,

1
ompleting the proof. //

Ws now oonstruct At  satisfying (3.7-8). Wb shall do so by choosing

(3.10) tlx) 3 fx atlydy
-1

where 8t 6 PN-2r approximates the Dirac 6-function. In particular, 6t

will be nonnegative and have integral on [-1,11 equal to one. Thus Xt

satisfies the claimed monotonicity property as well as having the required

values at *1. Hence (3.8) will follow automatically.

To construct 6t, first note that it suffices to take 6t(x) :1/2 for

all x e [-1,1] for N < 4r (recall that we restrict t to satisfy t2

) Y/N in (3.7-8)). For N - 4r, let n be the greatest integer not

exceeding N/2r. Note that N/n 4 3r. Let Tn denote the Chebyshev

polynomial of degree n, and let ft i :1 i n) be its zeros:

T nx) :- cos(n(cos Ix))

t : os((i - 1/2 )W/n) -: cos 8 l i 1

We shall establish (3.7-8) for t e ft i:1 i 4 n). Define

(3.11) t x) :- Ci[Tn(Xl/(x-ti2r

where ci is chosen so that P a ti(x)dx - 1. To estimate the size of ci,
-1 i

observe that
I

ITW(x) I Icos nOl 1/2 for InO - ill 3.

-12-

W"

, , , ! I II



Thus, writing x = cos a, we see that for InO - iW

ITn(x)/(x-t i ) 1 ;0 I cos e - coseiI-I

1/2 Icosli + -l)w/n - oosei I -

3 -

> t(5w/3n)max{sin(i + .!)/n,sinOi}]

E(5%/n)sin6i] ,

because sinO/e is decreasing on (0,w]. The measure of the set

Ix = cosO:InO - iwI 4 W/3} is

cos((i - )w/n) - cos((i + j)T/n) > (21/3n)min{sin(i * )W/n}

> (2w/9n)sin.

Therefore,

-1 = fl 2rdxc 1  [Tn (x)/(x-t)]

-1

> ( (/n)sinO i )-2r(2w/ 9n )sin Oi

Thus

(3.12) ci ( 24(5wsini /n)2r-1 24(57 1-tfl /n) 2rr1 t iIN)

To complete the estimate (3.7), observe that

f x 6 t(Y)dy x t
-11

H- I(x) ci

(y) x
Therefore,

1  t )c i  f2  -2ry
I~t i  Ix-t i

cix-t i,-2r+I /(2r-1).

Combined with (3.12), this proves (3.7) for t. ti . Hence (3.6) is now

verified for t ti .

* -U
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For the general case ti+1 < t < ti, define A t A t Note that,
since SinO/O is decreasing on (0,w],

Sw 1t2/n r V min(sin8isine i+1 }/n

6
f i+lsindO - t- t

6 i i +1

3: min{sini,sin6 i+}/n 4 31l4,72/n.

Therefore,

f1 I~tAtl(x)ix-tloS Iw~x)dx
fit t I t tJ (x Ix-t(Slw(x) dx-1

-1 i

4 f ltH t I(x) tx-tlslw(x)dx
-1 i

+ Iis -A .i(x) lx-tlS_ 1~ d
-1 t wx)dx

This first term, via (A2). is bounded by

f tilx-tlAlw(x)d
x  (t -t)ow(t)

t 2

C A (t -t t )w(t)

C A2 (3 w -/1- 2n 8w (t)

(The application of assumption A2. is valid provided, e.g.,
min(I -t'l ti+ 1  > Y(ti - ti 1). The reader may easily check that this

holds if the constant K "tentioned in the r(or.Iary, and the subsequent
discussion, is chosen sufficiently large, depending on r and Y . This
observation applies as well to the application of assumptions A2 and A3 in the

-14-
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;,ext set of inequalities.) Since (3.7-8) hold for ti, the second term is

bounded by (6 :

C r2r-1 f Ix-t i -2r+ 1 1x-t - 1w (x )dxc Ix-t f x2 -i-ti +1 I

+ f' Ixt- Iw(x)dx
Ix-tI<2tti-ti+i I

1 C (26)2r-1 f tx-ti-2r w(x)dx

Ix-tI21ti-ti+1 i

S

+ 2sA 2It i-ti+ w(t)

< C r (28)22r-1 1(2 1t-ti+1)-2r+lW(t)

+ 2SA2 Iti-t +1 I aw(t)

r,s - /N)Sw(t),

assuming (A2) and (A3) hold. Therefore, (3.6) is now proved for all t e

[-1,1], and hence the estimate (3.1) is established for smooth u and for

weights w satisfying assumptions (A1-3). In fact, in view of the Lemma, one

can improve (3.6), and hence (3.1), by replacing the expression (4-2/N)s

by min((-_t2 /N) s ,(1-t2) s). To extend the result to more general u,

define, for positive integers s,

(3.13) *u'fl lu(k)(x)I(_x2)kw(x)dx,
w,5 k=O -1

where u(s )  is interpreted as a weak derivative. Define

(3.14) y' (u e L1  ([-1,1])luow loc w,s

___-15-
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Then YS is a Banach space having C ([-1,1]) as a dense subspace*. Using
w

this density, we arrive at the following theorem, which summarizes our

results.

Theorem 2. Let w be a positive, integrable function on [-1,1] satisfying

assumptions (A1-3), where s in (A2) is some positive integer. Let u e Ya
w

(see (3.13-4) for the definition). Then for any positive integer N > s-i,

inf P lu-PI(x)w(x)dx < C f 1 iu(S (x)Imin{( 1x2/N)S,(1-x2)Slw(x)dx,
PePN -1

where PN denotes polynomials of degree not exceeding N and C w  is a

constant independent of N and u.

Remark 1. If u(S)(x)(1-x2 )s/ 2  is integrable on [-1,1], the above estimate

may be simplified to yield

inf fl lu-PI(x)w(x)dx ( C N-S fl lu(s)(x)I(1-x 2) s/2w(x)dx.
PePN -1 , -1

Remark 2. Assumptions (A2-3) imply, in particular, that w(t) > 0 for Itl <

1, unless w Z 0. But such a condition is necessary for an estimate such as

(3.1) to hold. To see this, suppose that w is continuous at t and w(t)

0. Choose a sequence {u ) of smooth functions with u positive, sup-

ported in {t : Itl 4 i/Jl and P u S)(t)dt= 1 (take j ) 1/(1-Iti) for
-1 1

simplicity). Then uj converges in L1  to u(x) :- Ht(x)(x-t)s-1/(s-1)!

as j tends to infinity. For u = uj, the right hand side of(3.1) will tend

to zero. However, the left hand side certainly will not do so since u 4 P
N

for any N.

Proof: Define Ur(x) :- u(rx), 0 < r < 1. Then as r - 1, ur 1u in Yw.

Let ur c be obtained from vr by mollifying: urc : Ur * 6 where
supp[6,- [-c,c] and 6E has inteqral one and is smooth. Then i
smooth-on [-1,1) for c < l-r, and Ur, Ur in Y;. Now let r -1,

E: 1-r 0 to get U , u in Y

-16-
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4. Hiher-order error estimates for Gaussian quadrature

In this section, we combine the results of previous sections to prove an

estimate of the form (2.9). From (2.8), we know that

le N(f) 4 C inf fl If'-PI(x)w(x)dx,
Pe -12N-2

where w(x) :- min{ 1x/N,1-x2}. It is easy to check that, if a collection

of weights wi satisfy (Al), (A) or (A3), then so does the weight function

minfw i. Thus Theorem 2 applies to the weight w since it is a minimum of

two Jacobi weights, yielding

le (fM1 4 C j1 if(s)(x)Iminf( -'x")s ,(1-xZ)S1}w(x)dx
N-1

= s P f(S) I(x in{ x/ N)s (1_x2)S}dx.

5-1

we summarize this final result as

Theorem 3. Let eN(f) denote the error in N-point Gaussian quadrature

approximation to the integral of f on [-1,11 (see (2.1-2) for

definitions). Suppose that (1-x2 )Sf(S)(x) (weak derivative) is integrable

on E-1,11, i.e., f e Y where s is any integer such that 1 4 s 4 2N.

Then

IeN(f) 1 4 C5 a f f()(X)lm n{(/1-x2/N)S(,_x2)SIdx
-1

where C5  in independent of N and f.

Remark 3. If f(S)(x)(1-x 2 )s/2  is integrable on E-I,1], the above estimate

simplifies to

le (f)I 4 C N-8 fI if () x)I(-x 2) s/2dx.
-1

This is the estimate anticipated in (1.1).

, ,,7, =
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